Insights in biology and physiology of bone and bone healing in critical-sized bone defects: A brief review

Authors

  • Anissa Feby Canintika Department of Orthopaedics and Traumatology, Faculty of Medicine, Universitas Indonesia - Cipto Mangunkusumo Hospital, Jakarta, Indonesia
  • I Gusti Ngurah Arga Aldrian Oktafandi Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia

DOI:

https://doi.org/10.31282/joti.v2n2.43

Keywords:

bone, bone healing

Abstract

Bone, a mineralized connective tissue that is highly dynamic, complex and vascularized, is unlike other tissues; when injured, such tissue does not form scar; instead, it heals and remodels throughout life. However, bone has limited regenerative capacity; bone can only repair itself when the injury is not extensive. When the defect is too large, bone may not be able to repair itself without treatment. In this review, we discuss the biology and physiology of bone and bone healing.

Downloads

Download data is not yet available.

References

Ratnayake J, Mucalo M, Dias G. Substituted hydroxyapatites for bone regeneration: A review of current trends. J Biomed Mater Res - Part B Appl Biomater. 2017;105(5):1285–99.

Martin V, Bettencourt A. Bone regeneration: Biomaterials as local delivery systems with improved osteoinductive properties. Materials Science and Engineering C. 2018.

Florencio-Silva R, Sasso GRDS, Sasso-Cerri E, Simões MJ, Cerri PS. Biology of bone tissue: Structure, function, and factors that influence bone cells. Biomed Res Int. 2015;2015:421746.

Im G Il. Stem cells for reutilization in bone regeneration. J Cell Biochem. 2015;116(4):487–93.

Lewallen EA, Riester SM, Bonin CA, Kremers HM, Dudakovic A, Kakar S, et al. Biological strategies for improved osseointegration and osteoinduction of porous metal orthopedic implants. Tissue Eng Part B Rev. 2015;21(2):218–30.

Zomorodian E, Baghaban Eslaminejad M. Mesenchymal stem cells as a potent cell source for bone regeneration. Stem Cells Int. 2012;2012:980353.

Durão SF, Gomes PS, Colaço BJ, Silva JC, Fonseca HM, Duarte JR, et al. The biomaterial-mediated healing of critical size bone defects in the ovariectomized rat. Osteoporos Int. 2014;25(5):1535–45.

Oryan A, Kamali A, Moshirib A, Eslaminejad MB. Role of Mesenchymal Stem Cells in Bone Regenerative Medicine: What Is the Evidence? Cells Tissues Organs. 2017.

Zhang X, Liu T, Huang Y, Wismeijer D, Liu Y. Icariin: Does it have an osteoinductive potential for bone tissue engineering? Phyther Res. 2014;28(4):498–509.

Stanovici J, Le Nail LR, Brennan MA, Vidal L, Trichet V, Rosset P, et al. Bone regeneration strategies with bone marrow stromal cells in orthopaedic surgery. Current Research in Translational Medicine. 2016.

Sponer P, Kucera T, Diaz-Garcia D, Filip S. The role of mesenchymal stem cells in bone repair and regeneration. Eur J Orthop Surg Traumatol. 2014 Apr;24(3):257–62.

Park H-C, Son Y-B, Lee S-L, Rho G-J, Kang Y-H, Park B-W, et al. Effects of Osteogenic-Conditioned Medium from Human Periosteum-Derived Cells on Osteoclast Differentiation. Int J Med Sci. 2017;14(13):1389–401.

Giannoudis P V., Dinopoulos H, Tsiridis E. Bone substitutes: An update. Injury. 2005;

Kraus KH, Kirker-Head C. Mesenchymal stem cells and bone regeneration. Vet Surg. 2006;

Polo-Corrales L, Latorre-Esteves M, Ramirez-Vick JE. Scaffold Design for Bone Regeneration. J Nanosci Nanotechnol. 2014;

Bracey DN, Jinnah AH, Whitlock P, Hutchinson I, Seyler T, Willey JS, et al. Proving Osteoinductive Potential of a Decellularized Xenograft Bone Substitute. bioRxiv. 2018;

El-Rashidy AA, Roether JA, Harhaus L, Kneser U, Boccaccini AR. Regenerating bone with bioactive glass scaffolds: A review of in vivo studies in bone defect models. Acta Biomaterialia. 2017.

Walmsley GG, Ransom RC, Zielins ER, Leavitt T, Flacco JS, Hu MS, et al. Stem Cells in Bone Regeneration. Stem Cell Reviews and Reports. 2016.

Buck DW, Dumanian GA. Bone biology and physiology: Part I. the fundamentals. Plastic and Reconstructive Surgery. 2012.

Urist MR. Bone: formation by autoinduction. 1965. Clin Orthop Relat Res. 2002;

Evans CH. Advances in regenerative orthopedics. In: Mayo Clinic Proceedings. 2013.

Ono N, Kronenberg HM. Bone repair and stem cells. Current Opinion in Genetics and Development. 2016.

Grosso A, Burger MG, Lunger A, Schaefer DJ, Banfi A, Di Maggio N. It Takes Two to Tango: Coupling of Angiogenesis and Osteogenesis for Bone Regeneration. Front Bioeng Biotechnol. 2017;5:68.

Oryan A, Alidadi S, Moshiri A, Maffulli N. Bone regenerative medicine: Classic options, novel strategies, and future directions. Journal of Orthopaedic Surgery and Research. 2014.

Claes L, Recknagel S, Ignatius A. Fracture healing under healthy and inflammatory conditions. Nature Reviews Rheumatology. 2012.

Fillingham Y, Jacobs J. Bone grafts and their substitutes. Bone Jt J. 2016;

Dimitriou R, Jones E, McGonagle D, Giannoudis P V. Bone regeneration: Current concepts and future directions. BMC Medicine. 2011.

García-Gareta E, Coathup MJ, Blunn GW. Osteoinduction of bone grafting materials for bone repair and regeneration. Bone. 2015.

Oliveira HL, Da Rosa WLO, Cuevas-Suárez CE, Carreño NLV, da Silva AF, Guim TN, et al. Histological Evaluation of Bone Repair with Hydroxyapatite: A Systematic Review. Calcified Tissue International. 2017.

Miller CP, Chiodo CP. Autologous Bone Graft in Foot and Ankle Surgery. Foot and Ankle Clinics. 2016.

Marx RE. Bone and Bone Graft Healing. Oral and Maxillofacial Surgery Clinics of North America. 2007.

Osugi M, Katagiri W, Yoshimi R, Inukai T, Hibi H, Ueda M. Conditioned Media from Mesenchymal Stem Cells Enhanced Bone Regeneration in Rat Calvarial Bone Defects. Tissue Eng Part A. 2012;

Mazock JB, Schow SR, Triplett RG. Proximal tibia bone harvest: Review of technique, complications, and use in maxillofacial surgery. Int J Oral Maxillofac Implant. 2004;

Jakse N, Seibert FJ, Lorenzoni M, Eskici A, Pertl C. A modified technique of harvesting tibial cancellous bone and its use for sinus grafting. Clin Oral Implants Res. 2001;

Kretlow JD, Mikos AG. Review: Mineralization of Synthetic Polymer Scaffolds for Bone Tissue Engineering. Tissue Eng. 2007;

Burdette AJ, Guda T, Thompson ME, Banas R, Sheppard F. A Novel Secretome Biotherapeutic Influences Regeneration in Critical Size Bone Defects. J Craniofac Surg. 2018;

Smith JD, Abramson M. Membranous vs Endochondral Bone Autografts. Arch Otolaryngol. 1974;

Vuyk HD, Adamson PA. Biomaterials in rhinoplasty. Clinical Otolaryngology and Allied Sciences. 1998.

Lu H, Liu Y, Guo J, Wu H, Wang J, Wu G. Biomaterials with antibacterial and osteoinductive properties to repair infected bone defects. International Journal of Molecular Sciences. 2016.

Campana V, Milano G, Pagano E, Barba M, Cicione C, Salonna G, et al. Bone substitutes in orthopaedic surgery: from basic science to clinical practice. J Mater Sci Mater Med. 2014;

Moreau MF, Gallois Y, Baslé MF, Chappard D. Gamma irradiation of human bone allografts alters medullary lipids and releases toxic compounds for osteoblast-like cells. Biomaterials. 2000;

Buck BE, Malinin TI, Brown MD. Bone transplantation and human immunodeficiency virus. An estimate of risk of acquired immunodeficiency syndrome (AIDS). Clin Orthop Relat Res. 1989;

Lewandrowski KU, Rebmann V, Päßler M, Schollmeier G, Ekkernkamp A, Grosse-Wilde H, et al. Immune response to perforated and partially demineralized bone allografts. J Orthop Sci. 2001;

Diker, N., Sarican, H., Cumbul, A., & Kilic, E. (2018). Effects of Systemic Erythropoietin Treatment and Heterogeneous Xenograft in Combination on Bone Regeneration of a Critical-Size Defect in an Experimental Model. Journal of Cranio-Maxillofacial Surgery. doi:10.1016/j.jcms.2018.09.015

Jensen SS, Bornstein MM, Dard M, Bosshardt DD, Buser D. Comparative study of biphasic calcium phosphates with different HA/TCP ratios in mandibular bone defects. A long-term histomorphometric study in minipigs. J Biomed Mater Res - Part B Appl Biomater. 2009;

Jung RE, Ha CHF, Sailer HF, Weber FE. Effect of rhBMP-2 on guided bone regeneration in humans. Clin Oral Implants Res. 2003;

Milovancev M, Muir P, Manley PA, Seeherman HJ, Schaefer S. Clinical application of recombinant human bone morphogenetic protein-2 in 4 dogs. Vet Surg. 2007 Feb;36(2):132–40.

Zhang Y, Yang S, Zhou W, Fu H, Qian L, Miron RJ. Addition of a Synthetically Fabricated Osteoinductive Biphasic Calcium Phosphate Bone Graft to BMP2 Improves New Bone Formation. Clin Implant Dent Relat Res. 2016;

Barba M, Cicione C, Bernardini C, Michetti F, Lattanzi W. Adipose-derived mesenchymal cells for bone regereneration: State of the art. Biomed Res Int. 2013;

Miron RJ, Zhang Q, Sculean A, Buser D, Pippenger BE, Dard M, et al. Osteoinductive potential of 4 commonly employed bone grafts. Clin Oral Investig. 2016;

Egol KA, Nauth A, Lee M, Pape HC, Watson JT, Borrelli J. Bone grafting: Sourcing, timing, strategies, and alternatives. J Orthop Trauma. 2015;

Courvoisier A, Sailhan F, Laffenêtre O, Obert L. Bone morphogenetic protein and orthopaedic surgery: Can we legitimate its off-label use? International Orthopaedics. 2014.

Visser R, Bodnarova K, Arrabal PM, Cifuentes M, Becerra J. Combining bone morphogenetic proteins-2 and -6 has additive effects on osteoblastic differentiation in vitro and accelerates bone formation in vivo. J Biomed Mater Res A. 2016 Jan;104(1):178–85.

Kawasaki K, Aihara M, Honmo J, Sakurai S, Fujimaki Y, Sakamoto K, et al. Effects of recombinant human bone morphogenetic protein-2 on differentiation of cells isolated from human bone, muscle, and skin. Bone. 1998;

Joseph V, Rampersaud YR. Heterotopic bone formation with the use of rhBMP2 in posterior minimal access interbody fusion: A CT analysis. Spine (Phila Pa 1976). 2007;

MacDonald KM, Swanstrom MM, McCarthy JJ, Nemeth BA, Guliani TA, Noonan KJ. Exaggerated inflammatory response after use of recombinant bone morphogenetic protein in recurrent unicameral bone cysts. J Pediatr Orthop. 2010;

Robin BN, Chaput CD, Zeitouni S, Rahm MD, Zerris VA, Sampson HW. Cytokine-mediated inflammatory reaction following posterior cervical decompression and fusion associated with recombinant human bone morphogenetic protein-2: A case study. Spine (Phila Pa 1976). 2010;

Shah RK, Moncayo VM, Smitson RD, Pierre-Jerome C, Terk MR. Recombinant human bone morphogenetic protein 2-induced heterotopic ossification of the retroperitoneum, psoas muscle, pelvis and abdominal wall following lumbar spinal fusion. Skeletal Radiol. 2010;

Bollini S, Gentili C, Tasso R, Cancedda R. The Regenerative Role of the Fetal and Adult Stem Cell Secretome. J Clin Med. 2013;

Khan WS, Rayan F, Dhinsa BS, Marsh D. An osteoconductive, osteoinductive, and osteogenic tissue-engineered product for trauma and orthopaedic surgery: How far are we? Stem Cells International. 2012.

He S, Nakada D, Morrison SJ. Mechanisms of stem cell self-renewal. Annu Rev Cell Dev Biol. 2009;25:377–406.

Both SK, van Apeldoorn AA, Jukes JM, Englund MCO, Hyllner J, van Blitterswijk CA, et al. Differential bone-forming capacity of osteogenic cells from either embryonic stem cells or bone marrow-derived mesenchymal stem cells. J Tissue Eng Regen Med. 2011 Mar;5(3):180–90.

Fan M, Chen W, Liu W, Du G-Q, Jiang S-L, Tian W-C, et al. The Effect of Age on the Efficacy of Human Mesenchymal Stem Cell Transplantation after a Myocardial Infarction. Rejuvenation Res. 2010;

Marsell R, Einhorn TA. The biology of fracture healing. Injury. 2011.

Maltman DJ, Hardy SA, Przyborski SA. Role of mesenchymal stem cells in neurogenesis and nervous system repair. Neurochem Int. 2011;59(3):347–56.

Lin W, Xu L, Zwingenberger S, Gibon E, Goodman SB, Li G. Mesenchymal stem cells homing to improve bone healing. Journal of Orthopaedic Translation. 2017.

Salem HK, Thiemermann C. Mesenchymal stromal cells: Current understanding and clinical status. Stem Cells. 2010;28(3):585–96.

Chatterjea A, Meijer G, Van Blitterswijk C, De Boer J. Clinical application of human mesenchymal stromal cells for bone tissue engineering. Stem Cells Int [Internet]. 2010; Available from: http://dx.doi.org/10.4061/2010/215625

Krampera M, Glennie S, Dyson J, Scott D, Laylor R, Simpson E, et al. Bone marrow mesenchymal stem cells inhibit the response of naive and memory antigen-specific T cells to their cognate peptide. Blood. 2003;101(9):3722–9.

Spees JL, Lee RH, Gregory CA. Mechanisms of mesenchymal stem/stromal cell function. Stem Cell Research and Therapy. 2016.

Linero I, Chaparro O. Paracrine effect of mesenchymal stem cells derived from human adipose tissue in bone regeneration. PLoS One. 2014;9(9):e107001.

Iso Y, Spees JL, Serrano C, Bakondi B, Pochampally R, Song YH, et al. Multipotent human stromal cells improve cardiac function after myocardial infarction in mice without long-term engraftment. Biochem Biophys Res Commun. 2007;

Hofstetter CP, Schwarz EJ, Hess D, Widenfalk J, El Manira A, Prockop DJ, et al. Marrow stromal cells form guiding strands in the injured spinal cord and promote recovery. Proc Natl Acad Sci. 2002;

Lee RH, Seo MJ, Pulin AA, Gregory CA, Ylostalo J, Prockop DJ. The CD34-like protein PODXL and {alpha}6-integrin (CD49f) identify early progenitor MSCs with increased clonogenicity and migration to infarcted heart in mice. Blood. 2009;

Lee RH, Pulin AA, Seo MJ, Kota DJ, Ylostalo J, Larson BL, et al. Intravenous hMSCs Improve Myocardial Infarction in Mice because Cells Embolized in Lung Are Activated to Secrete the Anti-inflammatory Protein TSG-6. Cell Stem Cell. 2009;

Dai W, Hale SL, Martin BJ, Kuang JQ, Dow JS, Wold LE, et al. Allogeneic mesenchymal stem cell transplantation in postinfarcted rat myocardium: Short- and long-term effects. Circulation. 2005;

Horie M, Choi H, Lee RH, Reger RL, Ylostalo J, Muneta T, et al. Intra-articular injection of human mesenchymal stem cells (MSCs) promote rat meniscal regeneration by being activated to express Indian hedgehog that enhances expression of type II collagen. Osteoarthr Cartil. 2012;

Horwitz EM, Prockop DJ, Gordon PL, Koo WWK, Fitzpatrick LA, Neel MD, et al. Clinical responses to bone marrow transplantation in children with severe osteogenesis imperfecta. Blood. 2001;

Amin HD, Brady MA, St-Pierre J-P, Stevens MM, Overby DR, Ethier CR. Stimulation of Chondrogenic Differentiation of Adult Human Bone Marrow-Derived Stromal Cells by a Moderate-Strength Static Magnetic Field. Tissue Eng Part A. 2014;

Hocking AM, Gibran NS. Mesenchymal stem cells: Paracrine signaling and differentiation during cutaneous wound repair. Exp Cell Res. 2010;316(14):2213–9.

Additional Files

Published

2019-08-25